Cooperative Fish and Wildlife Research Units Program: Massachusetts
Education, Research and Technical Assistance for Managing Our Natural Resources

Roy, A.H., C.L. Faust, M.C. Freeman, and J.L. Meyer. 2005. Reach-scale effects of riparian forest cover on urbanizing stream ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 62: 2312-2329.


We compared habitat and biota between paired open and forested reaches within five small streams (basin area 10–20 km2) in suburban catchments (9%–49% urban land cover) in the Piedmont of Georgia, USA. Stream reaches with open canopies were narrower than forested reaches (4.1 versus 5.0 m, respectively). There were no differences in habitat diversity (variation in velocity, depth, or bed particle size) between open and forested reaches. However, absence of local forest cover corresponded to decreased large wood and increased algal chlorophyll a standing crop biomass. These differences in basal food resources translated into higher densities of fishes in open (9.0 individuals·m–2) versus forested (4.9 individuals·m–2) reaches, primarily attributed to higher densities of the herbivore Campostoma oligolepis. Densities of terrestrial invertebrate inputs were higher in open reaches; however, trends suggested higher biomass of terrestrial inputs in forested reaches and a corresponding higher density of terrestrial prey consumed by water column feeding fishes. Reach-scale biotic integrity (macroinvertebrates, salamanders, and fishes) was largely unaffected by differences in canopy cover. In urbanizing areas where catchment land cover drives habitat and biotic quality, management practices that rely exclusively on forested riparian areas for stream protection are unlikely to be effective at maintaining ecosystem integrity.