Cooperative Fish and Wildlife Research Units Program: Vermont
Education, Research and Technical Assistance for Managing Our Natural Resources

Bonter, D. N., S. A. Gauthreaux, Jr., and T. M. Donovan. 2009. Characteristics of important stopover locations for migrating birds: Remote sensing with radar in the Great Lakes Basin. Conservation Biology 23:440-448.


A preliminary stage in developing comprehensive conservation plans involves identifying areas used by the organisms of interest. The areas used by migratory land birds during temporal breaks in migration (stopover periods) have received relatively little research and conservation attention. Methodologies for identifying stopover sites across large geographic areas have been, until recently, unavailable. Advances in weather-radar technology now allow for evaluation of bird migration patterns at large spatial scales. We analyzed radar data (WSR-88D) recorded during spring migration in 2000 and 2001 at 6 sites in the Great Lakes basin (U.S.A.). Our goal was to link areas of high migrant activity with the land-cover types and landscape contexts corresponding to those areas. To characterize the landscapes surrounding stopover locations, we integrated radar and land-cover data within a geographic information system. We compared landscape metrics within 5 km of areas that consistently hosted large numbers of migrants with landscapes surrounding randomly selected areas that were used by relatively few birds during migration. Concentration areas were characterized by 1.2 times more forest cover and 9.3 times more water cover than areas with little migrant activity. We detected a strong negative relationship between activity of migratory birds and agricultural land uses. Examination of individual migration events confirmed the importance of fragments of forested habitat in highly altered landscapes and highlighted large concentrations of birds departing from near-shore terrestrial areas in the Great Lakes basin. We conclude that conservation efforts can be more effectively targeted through intensive analysis of radar imagery.