Cooperative Fish and Wildlife Research Units Program: all
Education, Research and Technical Assistance for Managing Our Natural Resources


Robinson, D.H., Henderson, M.J., H.E., Goodman, Perry, R.W., Som, N.A. From site to system: approaches for producing system-wide estimates of fish habitat in large rivers. To be submitted to River Research and Applications.

Abstract

Worldwide, many productive rivers are dam-regulated and rely on flow management strategies that must balance support of ecological processes with human water use. One component of evaluating this balance is to understand ecological consequences of alternative flow management strategies, which has often been accomplished by coupling population dynamics models with models that relate streamflow to habitat availability and quality. Numerous methods assign habitat availability to locations within a river basin: these include fine-scale field-measured values that are extrapolated to other locations within the basin having similar physical characteristics, or equation-driven values created by functions of model-predicted values of physical characteristics. The array of options for creating habitat models is evolving rapidly as high-resolution remote sensing data becomes more accessible and computational capacity improves. Our objective was to identify tradeoffs among approaches that assign habitat relationships to large rivers, and to create a decision support tool to supplement choices of extent and granularity. Using a selection of case studies that represent a breadth of scales and diverse tradeoffs, we demonstrate the need for a transparent process of data evaluation and assessment to determine the appropriate fit for model scope or context that best supports management needs and recognize sources of uncertainty. The structured approach proposed here aims to improve future model development and refine population dynamics models that inform management of rivers.