Sethi SA, Bradley C. (2016) Statistical arrival models to estimate missed passage counts at fish weirs. Canadian Journal of Fisheries and Aquatic Sciences 73:1251-1260. DOI: https://doi.org/10.1139/cjfas-2015-0318
Abstract
Missed counts are commonplace when enumerating fish passing a weir. Typically connect-the-dots linear interpolation is used to impute missed passage; however, this method fails to characterize uncertainty about estimates, and cannot be implemented when the tails of a run are missed. Here, we present a statistical approach to imputing missing passage at weirs which addresses these shortcomings, consisting of a parametric run curve model to describe the smoothed arrival dynamics of a fish population and a process variation model to describe the likelihood of observed data. Statistical arrival models are fit in a Bayesian framework and tested with a suite of missing data simulation trials and against a selection of Pacific Salmon (Oncorhynchus spp.) case studies from the Yukon River drainage, Alaska, U.S.A. When compared against linear interpolation, statistical arrival models produced equivalent or better expected accuracy and a narrower range of bias outcomes. Statistical arrival models also successfully imputed missing passage counts for scenarios where the tails of a run were missed.