Cooperative Fish and Wildlife Research Units Program: Wisconsin Wildlife
Education, Research and Technical Assistance for Managing Our Natural Resources


Dougherty, E.R., D.P. Seidel, J.K. Blackburn, W.C. Turner, W.M Getz. 2022. A framework for integrating inferred movement behavior into disease risk models. Movement Ecology, 10, 31.

Abstract

Movement behavior is an important contributor to habitat selection and its incorporation in disease risk models has been somewhat neglected. The habitat preferences of host individuals affect their probability of exposure to pathogens. If preference behavior can be incorporated in ecological niche models (ENMs) when data on pathogen distributions is available, then variation in such behavior may dramatically impact exposure risk. Here we use data from the anthrax endemic system of Etosha National Park, Namibia, to demonstrate how integrating inferred movement behavior alters the construction of disease risk maps. We used a Maximum Entropy (MaxEnt) model that associated soil, bioclimatic, and vegetation variables with the best available pathogen presence data collected at anthrax carcass sites to map areas of most likely Bacillus anthracis (the causative bacterium of anthrax) persistence. We then used a hidden Markov model (HMM) to distinguish foraging and non-foraging behavioral states along the movement tracks of nine zebra (Equus quagga) during the 2009 and 2010 anthrax seasons. The resulting tracks, decomposed on the basis of the inferred behavioral state, formed the basis of step-selection functions (SSFs) that used the MaxEnt output as a potential predictor variable. Our analyses revealed different risks of exposure during different zebra behavioral states, which were obscured when the full movement tracks were analyzed without consideration of the underlying behavioral states of individuals. Pathogen (or vector) distribution models may be misleading with regard to the actual risk faced by host animal populations when specific behavioral states are not explicitly accounted for in selection analyses. To more accurately evaluate exposure risk, especially in the case of environmentally transmitted pathogens, selection functions could be built for each identified behavioral state and then used to assess the comparative exposure risk across relevant states. The scale of data collection and analysis, however, introduces complexities and limitations for consideration when interpreting results.