Cooperative Fish and Wildlife Research Units Program: Mississippi
Education, Research and Technical Assistance for Managing Our Natural Resources


Miranda, L.E., and N.M. Faucheux. 2022. Climate change alters aging patterns of reservoir fish habitats. Climatic Change 174(9). https://doi.org/10.1007/s10584-022-03432-w

Abstract

Two slow-moving developments are threatening reservoir aquatic habitats globally: aging and climate change. These events are projected to transform reservoir aquatic habitats in various and often unpredictable ways. Aging affects in-lake habitats directly, whereas climate change affects both in-lake and off-lake conditions. Climate change is expected to accelerate and, in some instances, possibly decelerate aging. Aging can be indexed as functional age, an index that signals the position of a reservoir along its lifespan relying on in lake descriptors of aquatic habitat. Using existing habitat datasets and climate projections, we developed semi-quantitative predictions about the effect of climate change on reservoir functional age in the USA. Driven by increased warming, functional age was predicted to increase latitudinally from south to north with no obvious longitudinal gradient. Functional age also changed with precipitation, increasing latitudinally from south to north and longitudinally in the east and west but decreasing in the central USA. Our projections are tentative because of the uncertain nature of reservoir aging and climate change sciences, as well as the inexactness of available data and models. We review general strategies suitable for systematically dealing with the unpredictable and constantly changing conditions expected to occur this century as reservoirs certainly continue to get older, within the scope of uncertain climate change projections.