Cooperative Fish and Wildlife Research Units Program: North Carolina
Education, Research and Technical Assistance for Managing Our Natural Resources

North Carolina Project

Estimation of US Atlantic Red Snapper Abundance

March 2021 - August 2023


Participating Agencies

  • University of Florida

Previously collected trap and video data, along with ROV survey data, will be used to estimate red snapper abundance within an integrated population modeling framework. Population models require spatial replication over the study area of interest and temporal replicates that are independent but close enough in time to ensure population closure. The proposed study would use trap and video count data to estimate detection probability and abundance of red snapper with an integrated populaiton model fitted in a Bayesian framework. Covariates that influence red snapper detection probability and abundance will be used to predict abundance (with associated uncertainty) at habitats that are similar to SEFIS sampling sites but not sampled. We will conduct workshops with reef fishery stakeholders to assist with identification of non-sampled hard bottom habitats. Based on past work, covariates important to red snapper abundance are likely to include bottom temperature, depth, latitude, and substrate type. A key question with this work is the spatial area that an individual SEFIS trap and video station effectively samples. Recently, project collaborators measured the response of red snapper around baited traps using fine spatial scale telemetry data, and response distance information will be used to estimate the sampled area at trap stations. Red snapper densities derived from ROV surveys will also be estimated at habitat types generally not sampled by SEFIS. Spatial maps of important covariates and habitat type will be used to generate abundance by area across the study region. These individual abundance values would be summed to estimate abundance of red snapper (with associated uncertainty) in the US Atlantic.