Cooperative Fish and Wildlife Research Units Program: Pennsylvania
Education, Research and Technical Assistance for Managing Our Natural Resources

Pennsylvania Project


A macrosystems ecology framework for continental-scale prediction and understanding of lakes

October 2016 - September 2023


Personnel

Participating Agencies

  • National Science Foundation

In the past decade, our understanding of how inland waters influence regional, continental, and global biogeochemical cycles has fundamentally changed. We have moved from discounting their contributions, to now recognizing these ecosystems as significant hotspots for the storage and transformation of nitrogen, phosphorus, and carbon. This realization has come about through careful and labor-intensive collection, integration, and synthesis of often-scattered data sources, combined with a variety of different approaches to extrapolate site-level measures to unsampled sites across regions and continents. Today, although this view of the role of inland waters in large-scale cycling is supported by numerous studies, substantial gaps in our understanding remain. Estimates for the same flux (e.g., organic carbon burial in lakes) often differ substantially among studies. Further, most attempts to quantify continental or global fluxes or pools come with caveats regarding the often high– and often unknown– uncertainty associated with these estimates. To better understand the role of inland waters in macroscale nutrient cycling, new approaches are needed to reduce uncertainty in extrapolating site-level estimates to larger geographical scales. The overarching goal of this research is to understand and predict nutrient patterns for ALL continental US lakes to inform estimates of lake contributions to continental and global cycles of nitrogen (N), phosphorus (P), and carbon (C), while also providing locally valuable information about conditions in unsampled lakes.